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Abstract. Seismic facies classification is crucial for seismic stratigraphic interpretation and hydrocarbon reservoir character-

ization but remains a tedious and time-consuming task that requires significant manual effort. The data-driven deep learning

approaches are highly promising to automate the seismic facies classification with high efficiency and accuracy, as they have

already achieved significant success in similar image classification tasks within the field of computer vision (CV). However,

unlike the CV domain, the field of seismic exploration lacks a comprehensive benchmark dataset for seismic facies, severely5

limiting the development, application, and evaluation of deep learning approaches in seismic facies classification. To address

this gap, we propose a comprehensive workflow to construct a massive-scale benchmark dataset of seismic facies and evaluate

its effectiveness in training a deep learning model. Specifically, we first develop a knowledge graph of seismic facies based on

the geological concepts and seismic reflection configurations. Guided by the graph, we then implement three strategies of field

seismic data curation, knowledge-guided synthesization, and GAN-based generation to construct a benchmark dataset of 800010

diverse samples for five common seismic facies. Finally, we use the benchmark dataset to train a network and then apply it on

two 3-D seismic data for automatic seismic facies classification. The predictions are highly consistent with expert interpretation

results, demonstrating the diversity and representativeness of our benchmark dataset is sufficient to train a network that can

generalize well in seismic facies classification across field data. We have made this dataset, the trained model and associated

codes publicly available for further research and validation of intelligent seismic facies classification.15

1 Introduction

Seismic facies classification aims to delineate individual units based on the specific reflection characteristics (e.g. reflection

configuration, continuity, amplitude and frequency contents), which is a fundamental and essential step in the seismic strati-

graphic analysis and contributes to the interpretation of sedimentary environments and hydrocarbon reservoir distributions

(Sheriff, 1976; Sangree and Widmier, 1977; Veeken, 2006; Jia and Zhao, 2007; Xu and Haq, 2022). With the dramatic in-20

crease in the amount of 3-D seismic data, manual interpretation method is typically labor-intensive and heavily relies on the
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experienced experts, thus the automatic seismic facies classification is the trend. Moreover, the development of automatic seis-

mic facies classification approaches benefits the accurate and efficient analysis of depositional environments and lithologic

distributions.

In recent years, many methods have been proposed for automatic seismic facies classification by using supervised, semi-25

supervised and unsupervised learning. Supervised learning methods (Wrona et al., 2018; Zhao, 2018; Liu et al., 2018; Zhang

et al., 2021) first use large amounts of labeled data to train a CNN model, and then use the trained model for automatic seismic

facies classification. Semi-supervised learning methods (Qi et al., 2016; Dunham et al., 2020; Liu et al., 2020) use both labeled

and unlabeled data to train the network to learn the features and distributions characterizing seismic facies. Unsupervised

learning methods (Qian et al., 2018; Zhao et al., 2018; Duan et al., 2019; Puzyrev and Elders, 2022; Li et al., 2023) first30

extract the nonlinear, discriminant and invariant features from unlabeled data, and then cluster or classify these features for

automatic seismic facies classification. The supervised learning methods often exhibit weak generalization capabilities across

different surveys due to a lack of labeled samples, while semi-supervised and unsupervised methods frequently encounter issues

with high uncertainty in prediction results. Besides, seismic facies can be classified into several different categories based on

different attribute parameters, which leads to challenges in the construction of seismic facies datasets and the assessment of the35

results.

To solve these problems, developing a knowledge graph of seismic facies and using it to provide guidelines for constructing

a benchmark dataset is considered an effective methodology. Knowledge graph is a graphical representation model consisting

of entities (nodes) and relationships (edges), which aims to represent knowledge in the form of graphs (Paulheim, 2017; Fensel

et al., 2020; Hogan et al., 2021). Currently, knowledge-driven geoscience big data researches have been successfully applied40

in various kinds of geoscience data-mining tasks (Zhou et al., 2021; Ma et al., 2023; Zhang et al., 2023; Hu et al., 2023). In

this work, we construct a knowledge graph of seismic facies, grounded in geological concepts and seismic reflection patterns.

This graph guides our processes of data selection, label generation, analysis, and result assessment.

To address the lack of representative benchmark datasets for seismic facies and improve its automatic classification, we

introduce a workflow (Fig. 1) to construct a massive-scale, feature-rich and high-realism benchmark dataset of seismic facies45

and use it to train a CNN model for accurate and efficient seismic facies classification. Initially, we construct a knowledge

graph of seismic facies based on the geological concepts and seismic facies configurations. Guided by the graph, we develop

three strategies of field data curation, knowledge-guided synthesization and Generative Adversarial Network (GAN)-based

generation to construct a massive-scale benchmark dataset of seismic facies. Utilizing this diverse dataset, we train a CNN

model and subsequently apply it to two 3-D field seismic datasets for automatic seismic facies classification.50

2 Building a massive-scale benchmark dataset of seismic facies

In this section, we implement a workflow of three strategies shown in left blue box in Fig. 1 to construct a massive-scale,

feature-rich and high-realism benchmark dataset of seismic facies. The first strategy is to build field samples from field data

curation with raw data collection, data standardization and skeletonization processes. The second strategy is to build synthetic
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Figure 1. The workflow of constructing a massive-scale, feature-rich and high-realism benchmark dataset of seismic facies (blue box) and

deep learning for seismic facies classification (red box). We first develop a knowledge graph of seismic facies based on geological concepts

and seismic facies configurations. Guided by the graph, we implement three strategies of field seismic data curation, knowledge-guided

synthesization, and AI-based generation to construct a massive-scale benchmark dataset. Finally, we use the benchmark dataset to train a

CNN model and then apply it on 3-D field seismic data for automatic seismic facies classification.

samples from knowledge-guided synthesization by synthesizing geological structural curves. The final strategy is to build syn-55

thetic samples from AI-based generation with GAN model. By employing these three strategies, we have ultimately constructed

a dataset containing 2000, 1500, 1500, 1500, and 1500 samples for five common seismic facies, respectively.

2.1 Knowledge graph of seismic facies

Before constructing the massive-scale benchmark dataset of seismic facies, it is necessary to develop a knowledge graph of seis-

mic facies based on the geological concepts and seismic reflection configurations, which can provide guidelines for preparing60

representative dataset samples and assessing facies classification results. Based on specific seismic reflection configurations,

seismic facies can be roughly divided into parallel and subparallel, prograding clinoforms, fill, hummocky, chaotic, divergent,

wave and reflection free (Mitchum Jr et al., 1977a, b; Veeken, 2006; Xu and Haq, 2022) (Fig. 2). Besides, these seismic facies

can be further subdivided based on several independent parameters such as the reflection configurations, continuity, ampli-

tude and frequency. For example, parallel and subparallel reflection can be subdivided into 27 different types based on the65

frequency (high, middle and low), amplitude (strong, moderate and week) and continuity (excellent, medium and poor). Based

on different reflection patterns, prograding clinoforms, fill and hummocky can be futher subdivided into five (sigmoid, oblique,
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Figure 2. Knowledge graph of seismic facies and corresponding typical seismic reflection configurations (modified from Mitchum Jr et al.

(1977a, b); Xu and Haq (2022)). In this graph, we roughly divided the seismic facies into eight types (parallel and subparallel, prograding

clinoforms, fill, hummocky, chaotic, divergent, wave and reflection free) based on specific seismic reflection configurations. Besides, we

also subdivided these seismic facies based on several independent parameters such as the reflection configurations, continuity, amplitude and

frequency, and illustrate the typical seismic reflection configurations for each type of seismic facies.

shingled, parallel and complex), six (onlap, prograded, mounded onlap, divergent, chaotic and complex) and four (fan complex,

mound, blanking and chaotic) types, respectively.

As shown in Fig. 2, we develop a knowledge graph of seismic facies and illustrate the typical seismic reflection configurations70

for eight types of seismic facies. However, considering the requirement for data amount and diversity in this work, we take the

five most common seismic facies (parallel and subparallel, prograding clinoforms, fill, hummocky, and chaotic) as an example

to explain how to construct a massive-scale, feature-rich and high-realism benchmark dataset of seismic facies from field data

curation, knowledge-guided synthesization and GAN-based generation.

2.2 Building facies samples by field data curation75

We start building our benchmark dataset by employing the field seismic data curation strategy with a series of steps includ-

ing raw data collection, manual interpretation and classification, bandpass filtering, resampling, amplitude equalization, and

4

https://doi.org/10.5194/essd-2024-337
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



skeletonization. We first collect almost 4000 global publicly available 2-D seismic profiles and 10 3-D seismic data from the

sources of United States Geological Survey (USGS), New Zealand Petroleum And Minerals (NZPAM), South Australian Re-

sources Information Gateway (SARIG), Society of Exploration Geophysicists (SEG) and so on. These 2-D and 3-D seismic80

data amount to around 130G, primarily located in the Gulf of Mexico, East and West Coast of America, Alaska, Bering Sea,

Beaufort Sea, New Zealand, Southern Australia and Sichuan Basin (see the data distributions map in Figure 1).

We then manually select, crop and classify these field seismic data based on the knowledge graph (Fig. 2). As shown in

the raw seismic data of Fig. 3, we totally collect 1000, 700, 500, 500 and 700 2-D raw seismic data for five common seismic

facies, respectively. However, due to the different data sources, depositional environments and data processing methods, these85

raw seismic data have large differences in sampling rates, amplitude and frequency distributions (as shown in Fig. 3 and

Fig. 4a) among same and different classes of seismic facies. These data variations and uncertainties are not related to the

seismic facies. Moreover, they may pose significant inference to deep learning models in learning the crucial features such

as texture patterns and reflection configurations, which are essential for identifying seismic facies categories. To migrate such

uncertainties in building our standard benchmark dataset, we introduce the data standardization process (Fig. 4) for each raw90

seismic data, including filtering, resampling, amplitude equalization, frequency equalization and so on. After applying the

data standardization process, the processed seismic data have been significantly improved in the consistency of the sampling

rates, amplitude and frequency distributions (as shown in Fig. 3b and Fig. 5). Finally, we retain the main geological structure

informations of strata by keeping only the waveform peaks as ones and setting elsewhere zeros to obtain the corresponding

field skeletonization images shown in Fig. 3c and Fig. 6.95

Compared to the skeletonization images (Fig. 4d) obtained directly from raw seismic data, the ones (Fig. 4c) with data

standardization can more clearly reflect the geological structure characteristics and enhance the consistency among the same

and different classes of seismic facies. The whole curation strategy, perticularly the data standardization processes and skele-

tonization, eliminates uncertainties inherent in field data from various surveys. This approach retains only the texture patterns

associated with seismic facies to produce standardized images for constructing the benchmark dataset. The same processing100

techniques will also be applied to inference data to ensure that a deep learning model trained on this dataset achieves consistent

predictions.

The facies samples from only the field seismic datasets are imbalanced in categaries and lack diversity and therefore are

not sufficient to build a massive-scale and representative benchmark dataset. For example, parallel and subparallel data are

more common than fill or hummocky data in field seismic data. Additionally, some specific patterns (e.g., parallel prograding105

clinoforms, chaotic fill, complex fill and blanking hummocky) are rare in these publicly available field seismic data.

2.3 Building facies samples from knowledge-guided synthesization

In order to overcome the sample imbalance and improve the diversity of the dataset, we further develop the second strategy

to automatically generate synthetic facies samples based on the knowledge graph of seismic facies and independent seismic
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Figure 3. Subset-1: raw seismic data manually collected and interpreted from the large amount of publicly available seismic datasets. In

total, we select, crop and classify 1000, 700, 500, 500 and 700 2-D raw seismic data for parallel and subparallel, prograding clinoforms, fill,

hummocky and chaotic, respectively.

reflection configurations. We first define different geological structural curves by using following geometric functions:110

z = z0, (1)

z = k0 ·x + z0, (2)

z = k0 ·x2 + z0, (3)

z =
1

k1 + k2 · e−k3·x , (4)

z =
ek1·x− e−k2·x

ek1·x + e−k2·x , (5)115

where x and z represent the position in the crossline and depth directions, respectively. Other parameters (z0, k0, k1, k2 and

k3) are used to control the geometry and distribution of the geological structural curves. Then we randomly combine these

geological structural curves at random intervals by using these functions. Furthermore, we can also first define some key

points for some complex geological structures, and then generate the corresponding geological structural curves by applying

interpolation process. After generating these different geological structural curves, we add random noise to each curve and120

randomly mask in the local areas to improve the realism of the synthetic data. Finally, we set ones on the geological structural

curves and zeros elsewhere to generate the corresponding synthetic skeletonization data.

In this way, we randomly generate synthetic facies samples for each types of seismic facies, especially some specific patterns

which are rare in field data curation, thus complementing the benchmark dataset of seismic facies. Finally, we automatically
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Figure 4. The workflow of constructing the field samples from field seismic data curation. We first manually collect and interpret raw

seismic data (a). Then we introduce data standardization process for each raw seismic data to improve the consistency of the sampling rates,

amplitude and frequency distributions. After obtaining the processed seismic data (b) , we retain the main geological structure informations

of strata by keeping on the waveform peaks as ones and setting elsewhere zeros to obtain the corresponding field skeletonization images (c).

generate 500 synthetic facies samples for five common seismic facies shown in Fig. 7, respectively. Compared to the field facies125

samples shown in Fig. 6, the synthetic facies samples generated from knowledge-guided synthesization contain more diverse

patterns and reduces sample imbalance. However, these synthetic facies samples may be ideally patterned and lack realism.

2.4 Building facies samples from GAN-based generation

As shown in the subset-1 and subset-2 in Fig. 6, Fig. 7 and Fig. 8a, b, the field facies samples has high realism but poor

diversity, while the synthetic samples has strong diversity but poor realism. In order to construct a massive-scale, feature-rich130

and high-realism benchmark dataset of seismic facies, we develop the third strategy of GAN-based generation (Fig. 8) to build

more facies samples with high diversity and strong realism.

As shown in Fig. 8c, the architecture of deep neural network used in this work is modified from the progressive growing of

GANs proposed by Karras et al. (2017). Traditionally, the progressive growing of GANs consists of a generator model (G) and

a discriminator model (D), where G was used to capture the data distribution and generate fake images to resemble the training135

dataset (real images), and D was used to assess the probability that images are real or fake. The G is composed of a Gen-1

module, five Gen-2 modules and a Conv1×1 layer, where Gen-1 module consists of a 4 × 4 convolutional layer and a 3 × 3

convolutional layer, and Gen-2 module consists of an upsampling layer and two 3× 3 convolutional layers. The D is composed
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Figure 5. Subset-1: processed seismic data generated from raw seismic data by applying the data standardization processes. Compared to

the raw seismic data, the processed seismic data exhibit significant improvement in the consistency of the sampling rates, amplitude and

frequency distributions.

of a Conv1×1 layer, five Dis-1 modules and a Dis-2 module, where Dis-1 module consists of two 3× 3 convolutional layer and

a average pooling layer, and Dis-2 consists of a minibatch stddev layer, a 3× 3 convolutional layer, a 4× 4 convolutional layer,140

a flatten layer and a linear layer. Compared to traditional GANs, the progressive growing of GANs does not directly generate

high-resolution images, but starts from generating simple low-resolution images and then continuously increases the resolution

of the generated images during the network training. This training strategy allows the network to learn the features of the

training dataset from coarse to fine scales, resulting in faster training speed, higher stability and better quality images. Besides,

we use WGAN-GP loss proposed by Gulrajani et al. (2017) as the GANs loss function L(G, D) to optimize the network.145

We first use subset-1 and subset-2 as training datasets to train the progressive growing of GANs. Initially, we first train a

simple network consisting of a Gen-1 module, two Conv1×1 layer and a Dis-2 module to generate and access the real and

fake facies samples with 4 × 4 scale. After stabilizing the training of this simple network, we then incorporate a Gen-2

module and a Dis-1 module into it for doubling the resolution of G and D. In this way, our network will progressively grow

to steadily generate high resolution (128 × 128) facies samples. Finally, we use the trained G to automatically generate 500150

facies samples for each type of seismic facies shown in subset-3 in Fig. 8d and Fig. 9. Compared to the subset-1 and subset-2,

the facies samples constructed by the GAN-based generation hold both high diversity and strong realism.
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Figure 6. Subset-1: field facies samples generated from processed seismic data by applying the skeletonization process. After obtaining the

processed seismic data, we retain the main geological structure informations of strata to generate the corresponding field skeletonization

images. Finally, we use the first strategy to manually select 1000, 700, 500, 500 and 700 field facies samples for five common seismic facies,

respectively.

2.5 The final benchmark dataset of seismic facies

After applying three strategies of field data curation, knowledge-guided synthesization and GAN-based generation to build

diverse facies samples, we construct a massive-scale, feature-rich and high-realism benchmark dataset of seismic facies155

and we display some facies samples in Fig. 6-9. As shown in Fig. 10, we finally generate a total of 2000, 1500, 1500,

1500, and 1500 diverse facies samples for five common seismic facies (parallel and subparallel, prograding clinoforms, fill,

hummocky and chaotic), respectively. The final benchmark dataset, named cigFacies, has been made publicly available at

https://zenodo.org/records/10777460 (Gao et al., 2024a).

3 Deep learning for seismic facies classification160

After constructing the comprehensive benchmark dataset of seismic facies (Fig. 10), we use it to train a simple CNN for the

seismic facies classification task shown in right red box in Fig. 1. In this study, we first use it to train and validate a simple CNN

model with 6400 and 1600 pairs of facies samples, respectively. Then we develop a predicted workflow to apply the trained

network for automatic seismic facies classification in the 3-D field seismic data.
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Figure 7. Subset-2: synthetic facies samples generated from knowledge-guided synthesization. In this strategy, we first construct some

geological structural curves from geometric functions or interpolation process. Then we add random noise and mask for each curve to

improve the realism of synthetic facies samples. Finally, we use the second strategy to automatically generate 500 synthetic facies samples

with more diverse patterns for each seismic facies, respectively.
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GAN for generating facies samples
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(GAN-based generation)
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Figure 8. The workflow of constructing the synthetic samples from GAN-based generation. In this strategy, we first use the subset-1 (a)

and subset-2 (b) generated from the first and second strategies to train a progressive growing of GANs (c), and then use the trained G to

automatically generate synthetic facies samples (d) for each type of seismic facies.
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Figure 9. Subset-3: synthetic facies samples generated from GAN-based generation. In total, we use the third strategy to automatically

generate 500 synthetic facies samples with both high diversity and strong realism for each type of seismic facies, respectively.

3.1 Training and Validation165

We consider seismic facies classification as an image classification problem with the goal to classify the 3-D field seismic

data to the corresponding seismic facies (e.g. parallel and subparallel, prograding clinoforms, fill, hummocky and chaotic). In

this study, we use a simple deep neural network (ResNet-50) proposed by He et al. (2016) (Fig. 11a) to implement automatic

seismic facies classification. We train and validate our CNN model by using 6400 and 1600 random pairs of the benchmark

dataset of seismic facies. Besides, in order to improve the diversity of dataset, we apply random data augmentation strategies170

(e.g. flip, translation, crop and resize) for each facies sample before feeding it into the network. we train our network by using

the following cross entropy loss function L:

L=−
N−1∑

i=0

yi log(xi), (6)

where N denotes the number of classes, and xi and yi represent the one-hot prediction and label at the i-th class, respectively.

Considering the computation time and memory, we set the batch size to 32 and use the Adam optimizer to optimize the network175

parameters. In the training process, we start the learning rate at 0.01 and adaptively reduce the learning rate by half when the

validation metric stagnates within 2 epochs. As shown in Fig. 11 b, c, both the training loss and validation loss converge to

0.006 and 0.1, while the learning rate decreases from 0.01 to 0.00001 after 200 epochs.

To verify the performance of the trained network, we first apply it to the validation dataset which are not included in training

dataset. As shown in the Fig. 11 d, the predicted results are consistent with the labels. Besides, the predicted accuracy for five180
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Figure 10. cigFacies: the final benchmark dataset of seismic facies construct from three strategies of field data curation, knowledge-guided

synthesization and GAN-based generation. In this dataset, we totally generate 2000, 1500, 1500, 1500, and 1500 diverse facies samples for

five common seismic facies (parallel and subparallel, prograding clinoforms, fill, hummocky and chaotic), respectively.

common seismic facies in validation dataset can up to 97.75%, 99%, 99.67%, 97.33% and 98.33%, which indicates that the

trained network has successfully learned for automatic seismic facies classification.

3.2 Testing on the 3-D field seismic data

As shown in Fig. 12a, we develop a workflow for automatic seismic facies classification in 3-D field seismic data to further

verify the performance of the trained network. We first use an automatic horizon-picking method (Wu and Fomel, 2018) to185

extract the top and bottom surfaces (green and red curves in Fig. 12b) of the target section in the 3-D field seismic data. Then we

set a sliding window (blue box in Fig. 12b) bounded by the top and bottom surfaces to extract 2-D raw seismic image. Besides,

each extracted 2-D seismic image is flattened with the bottom surface to eliminate the influence of the geological structures.

We further apply the standardization and skeletonization processes to the flattened image to make it consistent with the training

dataset. Finally, we feed the skeletonization image into the trained network for automatic seismic facies classification.190

In this work, we apply the trained network on two distinct 3-D field seismic data (Longang and Yuanba) with complex

geological structures. The Longgang (LG), Yuanba (YB) areas in Sichuan Basin develop a huge amount of platform margin

reef complexes, which have emerged as an important field for oil and gas exploration (Chen et al., 2012; Xu et al., 2015;

Tan et al., 2020). The first study case is the Permian Changhsing Formation of the LG 3-D seismic data shown in Fig. 12b

and Fig. 13a. We employ the predicted workflow (Fig. 12a) with a sliding window traversing the entire 3D target strata,195
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Figure 11. (a) The architecture of deep neural network (ResNet-50) used in this work for automatic seismic facies classification. The training

(blue) and validation (orange) loss curves (b) and learning rate curve (c) during network training. After training the network, we apply the

trained network to the validation dataset to verify its performance. The predicted results are consistent with the labels (d), which demonstrated

that the trained network has successfully learned to automatically classify the seismic facies.
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Figure 12. We employ the prediction workflow (a) with a sliding window scanning the entire 3D target section in the 3-D seismic data (b and

f), yielding the seismic facies classification results (c and g). Then we obtain the corresponding sedimentary facies results (d and h) based

on the predicted seismic facies result, well log informations, seismic data and geological and geophysics knowledge. Compared to the expert

interpretation results (e and i), our predicted sedimentary facies results are high consistent.

yielding the seismic facies classification result shown in Fig. 12c. Besides, we display the predicted results with different 2-

D profiles in Fig. 13b-f. The regions indicated by the blue arrows are correctly predicted to the hummocky facies, which are

roughly consistent with geological structural uplift in corresponding 2-D seismic profiles. However, some artifacts or inaccurate

predictions still appear in some areas indicated by red arrow in Fig. 13f, which is mainly due to the incomplete flattening of the

strata. Finally, we obtain the corresponding sedimentary facies result (Fig. 12d) based on the predicted seismic facies result,200

well log informations, seismic data and geological and geophysics knowledge. Our final sedimentary facies result (Fig. 12d) is

highly consistent with the expert interpretation of sedimentary facies shown in Fig. 12e.

The second study case is the Permian Changhsing Formation of the YB 3-D seismic data (Fig. 12f and Fig. 14a), which

consists more complex geological structures than the LG 3-D seismic data. Following the same predicted workflow as before,

we obtain the corresponding distributions of seismic facies and overlay the result with a manually interpreted horizon shown205

in Fig. 12g and Fig. 14b. The predicted distribution of hummocky seismic facies is consistent with the uplifted areas on the

manually interpreted horizon. Such consistency can be better resolved in Fig. 14, where more 2D seismic profiles are displayed

with the predicted result. However, some regions indicated by the red arrows (Fig. 14f) are incorrectly predicted as other

seismic facies, which is probably due to the unsuitable scale of sliding window for the local regions, the influence of sliding
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window boundary effects, and incomplete flattening of the strata. Finally, we also generate the corresponding sedimentary210

facies results shown in Fig. 12h, where the platform margin reef are clearly and reasonably resolved and the spatial distribution

of the platform margin is highly consistent with the expert interpretation in Fig. 12i.

4 Discussion

Applications on the validation dataset and two 3-D field seismic data indicate that the CNN model trained by our bench-

mark dataset has promising performance and strong generalization for automatic seismic facies classification. The benchmark215

dataset of seismic facies, guided by the knowledge graph and constructed from three strategies of field seismic data curation,

knowledge-guided synthesization and GAN-based generation, can avoid the problems such as sample imbalanced, poor diver-

sity and weak realism that usually occur in the traditional dataset construction methods. Besides, the data standardization and

skeletonization processes successfully mitigate all potential data uncertainties (not related to seismic facies) across diverse data

sources. This enables a deep learning model trained by the dataset to be effectively applied to field data from various surveys,220

thereby enhancing its generalizability.

Although the predicted results are roughly consistent with the human interpretation results, some limitations remain in the

prediction with a sliding window. The normal or reverse faults in the seismic data probably introduce some unreasonable

geological structures when flattening the seismic data, thus resulting in inaccurate predicted results. The proper setting of the
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sliding window size has a significant effect on the results, which needs to appropriately match the size of the key seismic225

facies in the seismic data. In addition, due to the predicted result is obtained by scanning pixel by pixel, some inaccurate

predicted results may occur in the boundaries between different seismic facies, where the sliding window only contains the

partial geological structure.

In the future, we can construct a more complete knowledge graph of seismic facies based on multiple parameters such

as reflection configurations, continuity, amplitude, frequency, wave pattern and so on. We can further construct 3-D seismic230

datasets with multi-attribute features instead of 2-D skeletonization dataset that only contain geological structure informations.

Additionally, we can develop a multi-scale 3D network for automatic seismic facies classification, which can improve the

accuracy of predicted results in the boundaries between different seismic facies.

5 Conclusion

We have developed three strategies guided by a knowledge graph to build a benchmark dataset that is vast in scale, rich in235

features, and offers high realism. To the best of our knowledge, this dataset is the most extensive dataset of seismic facies cur-

rently available. The seismic facies knowledge graph, developed based on comprehensive literature review, summarizes various

typical seismic facies types, along with their corresponding geological origins and seismic response features. This knowledge
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graph provides comprehensive guidance for the three strategies employed in building the benchmark dataset, ensuring the com-

prehensiveness and representativeness of the data sample construction. The first strategy of field seismic data curation yields240

the first subset that is authentic but exhibits some imbalance and limited diversity. The second strategy of sample synthesis,

informed by the knowledge graph, generates a second subset of samples containing any category and pattern features, thereby

addressing the issues of uneven sample type distribution and lack of diversity in the first subset. However, the synthesized

samples also face the problem of being overly idealized and not sufficiently realistic. Consequently, a third strategy, based on

AI generation, is adopted to refine the dataset construction. This strategy involves training a GAN model using the already245

constructed first and second subsets, then leveraging it to derive a third subset with diverse patterns and realistic features. By

merging these three subsets, we have ultimately constructed a dataset containing 2000, 1500, 1500, 1500, and 1500 samples

for five common seismic facies, respectively. This benchmark dataset has been demonstrated to effectively train a CNN model

that achieves notable performance in seismic facies classification across two distinct 3-D field datasets. We have made this

benchmark dataset publicly available, encouraging its further enhancement and utilization by others in the development and250

evaluation of deep learning approaches for seismic facies characterization.

6 Code and data availability

The benchmark dataset of seismic facies has been uploaded to Zenodo and are freely available at https://zenodo.org/records/10777460

(Gao et al., 2024a). The corresponding codes for constructing dataset and model training have been uploaded to Zenodo and

are freely available at https://zenodo.org/records/13150879 (Gao et al., 2024b).255
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